Skip to main content
Log in

Application of the homotopy method for the analytic approach of the nonlinear free vibration analysis of the simple end beams using four engineering theories

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, nonlinear vibration analyses of Euler–Bernoulli, Rayleigh, Shear and Timoshenko beams with simple end conditions are presented using homotopy analysis method (HAM). Closed form solutions for natural frequencies, beam deflection, post-buckling load–deflection relation, and critical buckling load are presented. The calculated natural frequencies for all four cases were verified against some available results in the literature and very good agreement observed. Furthermore, obtained results for deflection, buckling, and post-buckling of each beam are presented and the effects of some parameters, such as slenderness ratio, the rotary inertia, and the shear deformation are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayfeh A.H.: Problems in Perturbation. John Wiley & Sons, New York (1985)

    MATH  Google Scholar 

  2. Amabili M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  3. Lyapunov, A.M.: General Problem on Stability of Motion. Taylor & Francis, London (1992) (English translation)

  4. Karmishin, A.V., Zhukov, A.T., Kolosov, V.G.: Methods of Dynamics Calculation and Testing for Thin-Walled Structures. Mashinostroyenie, Moscow (1990) (in Russian)

  5. Adomian G.: Nonlinear stochastic differential equations. J. Math. Anal. Appl. 55, 441–452 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  6. Adomian G., Adomian G.E.: A global method for solution of complex systems. Math. Model. 5, 521–568 (1984)

    Google Scholar 

  7. Liao S.: Beyond perturbation—introduction to the homotopy analysis method. Chapman & Hall/CRC, London (2004)

    MATH  Google Scholar 

  8. Bhashyam G.R., Prathap G.: Galerkin finite element method for nonlinear beam vibrations. J. Sound Vib. 72, 91–203 (1980)

    Article  Google Scholar 

  9. Tsiatas, G.C.: Nonlinear analysis of non-uniform beams on nonlinear elastic foundation. Acta Mech. (2009). doi:10.1007/s00707-009-0174-3

  10. Pielorz A.: Nonlinear equations for a thin beam. Acta Mech. 167, 1–12 (2004)

    Article  MATH  Google Scholar 

  11. Andrianov I.V., Awrejcewicz J.: On the improved Kirchhoff equation modeling nonlinear vibrations of beams. Acta Mech. 186, 135–139 (2006)

    Article  MATH  Google Scholar 

  12. Wojciech S., Adamiec-Wojcik I.: Nonlinear vibrations of spatial viscoelastic beams. Acta Mech. 98, 15–25 (1993)

    Article  MATH  Google Scholar 

  13. Irschik H., Gerstmayr J.: A continuum mechanics based derivation of Reissner’s large-displacement finite-strain beam theory: the case of plane deformations of originally straight Bernoulli–Euler beams. Acta Mech. 206, 1–21 (2009)

    Article  MATH  Google Scholar 

  14. Irschik H.: Analogy between refined beam theories and the Bernoulli–Euler theory. J. Solids Struct. 28, 1105–1112 (1991)

    Article  MATH  Google Scholar 

  15. Anderson R.A.: Flexural vibrations in uniform beams according to Timoshenko theory. J. Appl. Mech. 20, 504–510 (1953)

    MATH  Google Scholar 

  16. Dolph C.: On the Timoshenko theory of transverse beam vibrations. Q. Appl. Math. 12, 175–187 (1954)

    MATH  MathSciNet  Google Scholar 

  17. Huang T.C.: The effect of rotary inertia and of Shear deformation on the frequency and normal mode equations of uniform beams with simple end conditions. J. Appl. Mech. 28, 579–584 (1961)

    MATH  Google Scholar 

  18. Adam C.: Modal analysis of elastic-visco plastic Timoshenko beam vibrations. Acta Mech. 126, 213–229 (1998)

    Article  MATH  Google Scholar 

  19. Zhong H., Guo Q.: Nonlinear vibration of Timoshenko beams using the differential quadrature method. Nonlinear Dyn. 32, 223–234 (2003)

    Article  MATH  Google Scholar 

  20. Abramovich H., Elishakoff I.: Application of the Krein’s method for determination of natural frequencies of periodically supported beam based on simplified Bresse–Timoshenko equations. Acta Mech. 66, 39–59 (1987)

    Article  MATH  Google Scholar 

  21. Golpalakrishinan S., Martin M., Doyle J.F.: A matrix methodology for spectral analysis of wave propagation in multiple connected Timoshenko beams. J. Sound Vib. 158, 11–24 (1992)

    Article  Google Scholar 

  22. Rao G.V., Raju I.S., Raju K.K.: Nonlinear vibrations of beams considering shear deformation and rotary inertia. AIAA J. 14(5), 685–687 (1976)

    Article  MATH  Google Scholar 

  23. Meirovitch L.: Elements of Vibration Analysis. McGraw-Hill, New York (1986)

    Google Scholar 

  24. Han S.M., Benaroya H., Wei T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225, 935–988 (1999)

    Article  Google Scholar 

  25. Liao S.J., Tan Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad H. Kargarnovin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kargarnovin, M.H., Jafari-Talookolaei, R.A. Application of the homotopy method for the analytic approach of the nonlinear free vibration analysis of the simple end beams using four engineering theories. Acta Mech 212, 199–213 (2010). https://doi.org/10.1007/s00707-009-0253-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0253-5

Keywords

Navigation